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The wing beat of tiny insects has attracted considerable interest because conventional
aerodynamics predicts a reduction of flight efficiency when aerofoils are com-
paratively small and slow. Here, two approaches are reported by which we
investigated the dynamics of the wing beat of tethered flying Drosophila melanogaster.
First, the forces acting on the moving wing were calculated from three-dimensional
kinematic data, following the blade-element theory which assumes quasi-steady
aerodynamics. Under these conditions, the flight force is directed upwards, relative
to the longitudinal body axis, during the second half of the downstroke; it is oriented
forwards and downwards during the upstroke. The time average of the force
generated according to this theory does not correspond to the direction and
magnitude of the actual average force of flight. The expected force is directed forwards,
along the body’s longitudinal axis, and is too small to keep the fly airborne. Secondly,
an attempt is made to measure the timecourse of flight forces by attaching the fly to
a string, the displacement of which is monitored by means of laser interferometry. A
sharp lift-pulse is observed when the wing is rapidly rotated during the ventral
reversal of the wing-beat cycle. A second lift maximum of variable strength seems to
be associated with the squeeze—peel events during the dorsal reversal. These results
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20 J. M. ZANKER ANDK.G.GOTZ

support the notion that flight in small insects might be dominated by unsteady
mechanisms.

1. INTRODUCTION

Animal flight can be observed in manifold appearances, from the soaring of huge vultures to
the hovering f{light of tiny insects. Most puzzling is the elaboration of natural {lying machines,
by which hummingbirds stabilize their position in the air in front of flowers, or dragonflies
perform their aerobatic mating dances. The ease and perfection of animal flight challenged
human engineers to create flying machines (which mainly impress by their size) and to explain
flight capability by simple principles of physics. In the present paper we investigate how far
conventional aerodynamic theories can account for the hovering flight performance of small
insects. A list of the symbols used in the following equations is given in appendix 1 of the
previous report on wing-beat kinematics (Zanker 1990a) (paper 1).

Ficure 1. Acrodynamic force. When an acrofoil (profile section shaded) moves relative to the surrounding air at
a constant speed v, and with a constant angle of attack a,, a drag force D acts on the wing along the direction
of motion, and a lift force L normal to D. The resulting flight force vector F, is decomposed into the horizontal
component /7 and the vertical component F,, in body coordinates.

The success of man-made flying machines is based on the fact that lift is induced on a wing
which is moving at a velocity v, relative to the surrounding air. The aerodynamic force £,
(figure 1) acting on an aerofoil of length R and chord ¢ is described by two equations for the
drag component D, parallel to the direction of relative motion, and the lift component L,
normal to the movement direction, respectively (for a more comprehensive description and
discussion of stationary aerodynamics, see, for instance, Ellington 1984a).

L= ip?eRC,; ()
D = LpvEcRC,,. (2)

In these equations, p is the density of the medium in which the aerofoil is moving. The
coeflicients of lift and drag, C;, and Cj, respectively, depend on the size and shape of the aerofoil
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and on the angle under which the wing is hit by the air, the aerodynamic angle of attack «,.
These coefficients are often derived empirically by exposing a particular aerofoil to a defined
air stream and measuring the induced forces.

For an aerofoil rotating about an axis, like the blades of a helicopter, or oscillating about a
pivot, like the wings of insects, bats or birds,the relative velocity between wing and surrounding
medium, v,, and the aerodynamic angle of attack, a,, varies from the proximal to the distal end
of the wing. The blade-element theory (Osborne 1951) takes this into account by dissecting the
wing along its span R into infinitesimal blade elements characterized by their width dr and
their radial distance r from the axis of rotation. For these elements the equations 1 and 2 are
solved by replacing R by dr. The integral over 7 from O to R yields the weighted spatial average
of the aerodynamic forces acting on the wing, for a given position during the wing-beat cycle.
This oversimplified approach neglects the effects of acceleration and the effects of spanwise
components of air flow.

A correction is necessary when applying equations 1 and 2 to insect flight. For the oscillating
wing, the velocity of the wing element relative to the surrounding medium is composed of
components due to the flapping velocity of the wing vy, , the translational velocity of the
animal v,,,,, (which is zero in hovering flight), and the ‘induced velocity’ v;,4. The induced
velocity is caused by the downward momentum imparted to the air by the fly, in order to
obtain a lift force by reaction. The mean value of the induced velocity can be estimated from
the mass of the hovering fly, m,, , and the area covered by the wing stroke, A4, according to the
Rankine-Froude axial momentum theory of propellers (see Osborne 1951):

myy g = 2pA, v (3)

ind»

with g being the gravitational constant. In the following, the aerodynamic effective velocity,
v,, includes the induced velocity v;,, and thus represents a fair approximation of the relative
motion between wing and surrounding air.

The ratio between inertial and frictional forces, responsible for the lift and drag component
respectively, is reflected by the Reynolds number Re. For a wing element of the characteristic
size ¢, the length of its chord, moving at a speed of v,, it is given by:

Re=c,/v (4)

with v being the kinematic viscosity of the medium. The investigation of technical aerofoils
(Thom & Swart 1940) confirmed that with decreasing Reynolds numbers the lift:drag ratio
approaches very small values.

Like common technical aerofoils, most bird wings operate at Reynolds numbers well above
10* (Ellington 1984a) with a satisfying lift:drag ratio. In contrast, the estimated Reynolds
numbers of small insects may fall far below 100, where the frictional forces acting on the wings
may exceed the expected lift from the inertial forces. For such insects, effective lift production
is particularly difficult to explain by the steady aerodynamics described so far. A sort of
‘swimming in the air’ was proposed for tiny insects as an alternative mechanism of flight-force
production. In this case frictional forces can be utilized when the wing area actually exposed
to the air is reduced during the upstroke, compared with the downstroke (Horridge 1956), or
when the downstroke is faster than the upstroke (Bennett 1973). This view was challenged by
the observation that no kinematic adaptations to such a mechanism can be found in small
insects. On the other hand, drag mechanisms seem likely to be involved in the flight of bigger
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22 J.M.ZANKER ANDK.G.GOTZ

insects such as butterflies, operating at higher Reynolds numbers (about 3000) (Weis-Fogh
1973 ; Ellington 1984a). For Drosophila, the kinematic study reported in Zanker (199oa) did
not provide any hint of a ‘swimming’ mechanisms, either.

The most serious problem introduced by the conventional analysis of Drosophila
aerodynamics is the implicit assumption that the instantaneous forces on the oscillating wing
are the same as those for a wing in steady motion at the same velocity and attitude. Whether
this quasi-steady assumption is justified has been the matter of a long controversy (see Jensen
1956; Weis-Fogh 1973; Ellington 1984 a—d, for example). Ellington’s conclusive rejection of
the quasi-steady assumption was based on a proof by contradiction: the mean lift coefficient
satisfying the net force balance during flight was estimated from the available kinematic data.
For some hovering animals, these values exceed the maximum coeflicients known from
technical or biological aerofoils. Because the mean forces generated by these animals
throughout the wing-beat cycle cannot keep the animal airborne, the assumption on which the
calculation was based must be false. However, as Ellington (19844, p. 2) puts it, ‘a decisive test
can only be accomplished by comparing measured instantaneous wing forces with those
predicted by the assumption’.

The purpose of the present paper is to attempt to assess the validity of the quasi-steady
assumption by comparison of the calculated with the measured forces. The degree of
correspondence between calculation and measurement will show whether this rather simple
theory can explain the hovering flight of Drosophila melanogaster or whether alternative
mechanisms have to be invoked. The following procedure will be applied. (i) Based on the
three-dimensional kinematic analysis of tethered flight presented in Zanker (19904, 6) and the
measurement of the wing shape and the lift and drag coeflicients, the flight forces are calculated
according to the blade-element theory under the quasi-steady assumption. This approach will
be called ‘quasi-steady theory’. (ii) The timecourse of the forces generated by Drosophila
melanogaster during fixed flight is measured by the displacement of a string to which the fly is
rigidly attached. The comparison of calculated and measured flight forces supports the
rejection of quasi-steady theory as an adequate description of the effect of wing beat in
Drosophila, and leads to (iii) the calculation of some aerodynamic parameters according to the
vortex theory (Ellington 19844, ¢).

2. MATERIALS AND METHODS
(a) Kinematic data

To calculate the forces acting on the wings according to the quasi-steady theory, the velocity
v, and the angle of attack a, of the wing must be known at any point of the wing and at any
time of the wing-beat cycle. These values were derived from the mean kinematic data of
Drosophila wing-beat cycle reported in paper 1 (Zanker 199oa). There, the position and
orientation of the wing at 25 phase steps of the wing-beat cycle was approximated by a set of
three orthogonal unit vectors which point in the direction of the longitudinal, the transverse
and the vertical axis of the wing. The latter vector is normal to the wing surface and attached
to the anatomical top side of the wing. By geometric transformations of the axis vectors, ¢, and
v, are calculated as a function of time ¢ and radial distance r. All calculations are based on the
average kinematic data from 1186 digitized photographs of the two wings from N = 10 flies,
leading to a mean number of measurements n = 95 for each of the 25 phase steps. Use of the
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average kinematics saves computation time and reduces the noise which will be blown up by
calculating temporal derivatives or geometric transformations. Unfortunately, confidence
limits cannot be given under these conditions. However, the extremely low s.e.m.s of the
kinematic data shown in paper 1 seemed to justify a simplified procedure. To estimate the
s.e.m., the aerodynamic variables are calculated from the individual wing-axis vectors for every
phase step; the range and mean of the s.e.ms is given in the figure legends. One should note,
however, that these values are only rough estimates, because additional inaccuracies are
introduced to the aerodynamic calculations by the limited precision of the morophological
wing data (see below).

As mentioned in paper 1, the flies were adjusted with horizontal body axis for technical
reasons, although this does not correspond to the natural hovering flight posture with almost
horizontal average stroke plane. Thus, the data will be presented in two different coordinate
systems. (i) Variables referring to the body axis system (figures 54, b and 7) are indicated by
the subscripts x, y and z. (ii) To allow for direct comparison of the calculated forces with the
forces measured othogonally to the average stroke plane (about 50° inclined relative to the x—y
plane in fly coordinates, see inset in figure 9), the data were finally transformed into a
coordinate system referring to the average stroke plane (figure 9), indicated by the subscript
s. It has to be emphasized that this purely geometrical transformation seems to be justified,
because in tethered flight of Drosophila no significant influence of the gravitational vector
orientation on flight-force production could be detected (Gotz 1968; cf. paper 1).

(b) Wing data

The blade-element theory requires, in addition to the kinematic data, that the wing chord
¢ is known as a function of radial distance r. The shape of Drosophila wings was evaluated by
means of a simple planimetric procedure. A wing was cut at its base and spread on a microscope
slide. The outline of the wing was drawn on a sheet of paper, enlarged with a projection
microscope by a factor of 100. The length R of the wing span was measured from the drawing,
and the wing was divided along the longitudinal axis into 20 equidistant sections. Then the
chord lengths ¢(r) of these 20 sections were determined. The average shape of six wings is

radial distance/mm

0 0.5 1.0 15 2.0 2.5
1 | | 1 | |
0 *
E —
g 0.5
~
<
3
=
S
1.0 -
%
e n=26
15

Ficure 2. Wing shape. Chord length ¢ plotted as a function of radial distance 7 from wing base. The asterisk marks
the radial distance r, of the wing’s centre of mass. Average values from six planimetrically evaluated wings.
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displayed in figure 2; the radial distance r is transformed back from the section number to its
metric dimension, using actual wing lengths. From the wing length R =2.47x10"°m
(4£0.02 x 1073 s.e.m.) and the average wing chord = 0.85x 107 m (£0.01 X 107 m s.e.m.),
the wing area 4, = 2.18 x 107* m* (£0.02 x 107 m*® s.e.m.) was determined. These values
differ from those published by Curtsinger & Laurie-Ahlberg (1981, 1985) for male Drosophila
melanogaster, which are generally smaller than the females used in the present study. The radial
distance of the wing’s centre of gravity, r, = 1.25x 107> m, was found by calculating the
average radial distance, weighted with the respective chord length. Strictly speaking, 7,
corresponds to the centroid of the area, which coincides with the centre of gravity (centroid of
mass), when thickness and density are virtually constant over the wing. Comparing the data
presented by Ellington (Table 1 in 19845) for the centroid of area and the centre of gravity,
it is clear that the radial distance of the latter is overestimated by the radial distance of the
former, probably because of a distal decrease of the wing’s thickness. On the other hand, 7,
might be underestimated when the wings were cut slightly distal to its kinematic base. Thus
the following calculations will be based on the value of r; = 1.25 x 107 m.

To determine the inertial forces acting during wing accelerations on the thorax, the ‘total’
mass of the wing, m,,, i.e. the mass of the wing plus the ‘virtual’ mass of the air accelerated
together with the wing, must be known. Twenty wings were cut off the thorax and put on an
analysis balance, taking care that weight losses due to evaporation were reduced. The average
mass per wing was roughly 5 pg. This corresponds to a value which can be estimated from the
wing area 4, when a mean thickness of the wing of 2x 107® m (i.e. about 0.08%, of R) and
a specific density of roughly 1.1 x 10* kg m™
surrounding the wing has to be regarded because this ‘virtual’ mass is accelerated together
with the wing (Alexander & Goldspink 1977; Vogel 1981). Assuming an air cylinder of the
mean diameter ¢ (Ellington 1984 5), the virtual mass can be estimated roughly to be 2 pug. Thus
the total mass of the wing, m,,, amounts to about 7 pg.

Finally, the lift and drag coefficients C;, and Cy, in equations 1 and 2 must be known for the

is assumed. In addition, the mass of the air

calculation of the flight forces. The conventional procedure to determine the dependence of C,
and C,, on the angle of attack a,, the ‘polar diagrams’, is to expose an aerofoil to a laminar
flow at a constant velocity »,. Then «, is varied and the forces acting on the aerofoil parallel
and normal to the flow, D and L, are measured. Here, a similar method was adopted. A
Drosophila wing was attached axially to a thin steel pin and positioned in the centre of a wind
tunnel which produced a laminar air stream. A uniform wind speed of about 1.5 ms™" was
maintained within the section of the tunnel to which the wing was exposed. Under the
influence of the wind, the steel pin is expected to bend proportionally to the forces acting on
the wing. The displacement of the wire was measured by projecting its shadow eccentrically
on the aperture of a light sensor. To correct for possible elastic anisotropies of the wire, the
measurements were calibrated, for each angle «,, by placing a small weight on the tip of the
pin, near the wing base. From five readings ((i) reference position of the wire without weight
in still air; (ii) with 1 mg weight in still air; (iii) reference position as in (i) ; (iv) without weight
in wind; (v) reference position as in (i)) the force acting on the wing and the wire are
determined in milligram units for wing inclinations e, between —90° and +90°. When this
was accomplished, the wing was detached from the wire and the same procedure was repeated
for the wire without the wing. These values were subtracted from the former ones, leading to
better estimates for the forces resulting form the wing’s aerodynamic properties. In two
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separate sets of measurements the lift and drag component of the aerodynamic force were
determined by rotating the setup by 90° around an axis perpendicular to the axis of the wind

tunnel.
n=5 e D. melanogaster
o D. virilis: flat
a D. virilis: cambered
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Ficure 3. Resolved polars of Drosophila wings. The aerodynamic coefficient of lift C}, (a) and drag C,, (b) are plotted
as functions of the aerodynamic angle of attack a,. For aerodynamic calculations, the average values measured
from five wings of Drosophila melanogaster (black dots; bars denote the s.e.m.) are either interpolated (continuous
lines) or approximated by trigonometric functions (dotted lines): C} = 0.7 sin2a; C, = 0.9-0.5 cos 2a. For
comparison, the values measured by Vogel (1967) for flat and cambered wings of Drosophila virilis are plotted
as open circles and triangles, respectively.

The results obtained by this method were not expected to be extremely accurate. Indeed, the
average coefficients from five wings presented in figure 3 as ‘resolved polars’ (black dots; the
bars show the standard errors of the mean) do exhibit some scatter. However, the
measurements are in qualitative agreement with earlier data published by Vogel (196%) for the
larger species Drosophila virilis (open symbols in figure 3). The coefficient of drag Cp, (bottom
panel of figure 3) has a minimum for small inclinations (about 0.4 at &, = 0°) and increases
to a maximum of roughly 1.0 for large inclinations (a, = +90°), i.e. the friction slightly
increases when the profile area exposed to the airstream is increased. As expected, the
coefficient of lift Cy, is close to zero at inclinations of 0° or +90°, i.e. when the wing is exposed
symmetrically to the air stream. It reaches values of about +0.5 (—0.5) for &, between 30° and
60° (—30° and —60°). This means that comparatively strong lift pointing upwards

a

(downwards) is induced, as soon as the wing is inclined nose up (down) relative to the wind.
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To allow for the calculation of the aerodynamic forces for any angle of attack, two procedures
were followed: either the values were interpolated between the measured coefficients, as
indicated by the continuous lines in figure 3, or the polar diagrams were approximated, within
reasonable limits for a,, by simple trigonometric functions, as indicated by the dotted lines and
the formulae given in the legend.
(¢) Force measurements

The forces produced during tethered flight have been measured in several insects, by means
of a variety of flight balances (see, for example, Hollick 1940; Weis-Fogh 1956; Vogel 1966;
Goétz 1968; Zarnack 1969; Cloupeau ¢t al. 1979; Nachtigall & Roth 1983). Most of these
systems were designed to investigate average flight performance. Accordingly, their time
resolution was too small to monitor the variations of the flight force during the wing-beat cycle.
A technique to record the instantaneous flight forces of Sarcophaga was developed by Buckholz
(1981). The measurement of the forces instantaneously generated by Drosophila during the
wing-beat cycle demands a particularly sensitive and fast device, because these forces are very
small (the mass of the fly is about 1mg) and vary with the wing-beat frequency of
approximately 200 Hz. Because no conventional balance solves this measuring problem, we
developed a special apparatus (sketched in figure 4), based on the taut-wire technique
introduced by Buckholz (1981). Basically, the fly is attached to a string, which is tuned to a
high resonance frequency. In our experimental setup, the displacement of the string monitoring
the instantaneous flight force is recorded by means of laser interferometry.

F1cure 4. Flight force measuring device. A flying Drosophila (F) is glued to a string (S), which is damped by a viscous
medium in a surrounding groove (D). The width of a horizontal gap between the string and a complementary
strip of metal lowered from above is varied according to the force of flight. This changes the distance of the
fringes in the diffraction pattern (DP) of a laser beam (LB). The analogue signal of a differential light sensor
(LS) positioned at the flanks of the first fringe monitors the instantaneous displacement of the string.

In all experiments, female wild-type Drosophila melanogaster, 3-8 days old, from the
laboratory stock ‘Berlin’ were used. Under cold anaesthesia they were glued with their head
and thorax to the string. As soon as the fixed fly recovers from the anaesthesia, it starts flying.
Care was taken to adjust the body axis such that the average stroke plane was approximately
horizontal, just as during hovering flight. The major advantage of a horizontal stroke plane is
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the reduction of inertial force components in the force signal measured orthogonally to this
plane. In this case, they are limited to the effects of the wing leaving the average stroke plane.
By increasing its tension, the steel string (diameter 0.15 mm, length 45 mm) was tuned to a
resonance frequency between 2 and 5 kHz. To prevent continuous oscillations at resonance
frequency after sharp and/or repeated excitations of the string, it had to be damped. A mixture
of vaseline and paraffin oil was used to fill a small groove around the string (D in figure 4). The
viscosity of this mixture was adapted to approximate critical damping. However, when a small
weight was dropped on the string, the induced oscillation was damped to about 59, after five
oscillation periods, or 2 x 1072 s, in a typical case. This corresponds to a logarithmic decrement
of 0.6. The string displacements thus reflect both the flight forces produced by the fly, and the
resonance properties of the string.

Owing to the strong tension on the string, the displacement induced by the flight forces were
extremely small. To measure these displacements a laser beam was sent through the small gap
between the string and the parallel edge of a plate held by a microdrive (figure 4). When the
gap was narrow enough, an interference pattern was displayed on a screen placed at 0.7 m from
the string. The basic distance between neighbouring maxima of the interference pattern was
set by adjusting the width of the gap. When the string moved, the width of the gap was slightly
varied and the fringes of the diffraction pattern were shifted correspondingly. The displacement
of the fringes could be simply recorded by a light sensor. The signal: noise ratio was improved
by a differential input system with the two sensors focused on the opposing flanks of the first
fringe of the diffraction pattern. This device is insensitive to fluctuations of background light.
Throughout the experiments, the displacement of the string was very small in comparison to
its length, and the resulting displacements of the maxima very small in comparison to the
distance between the maxima of adjacent fringes in the diffraction pattern. This justifies the
assumption of a linear relation between the analogue signal of the differential light sensor and
the external and internal forces acting on the string.

Because the actual properties of the described apparatus depended on the tension, the
attached weight, the damping conditions and the position of the light sensor relative to the
diffraction pattern, a calibration was required for every experiment. A complete frequency
characteristic was too complicated and time-consuming to be determined; thus (i) the sign of
the signal was verified by pressing a hair-like wire on the string from above and from below;;
and (ii) the resonance properties were controlled qualitatively by dropping a small weight on
the string, which led to damped oscillations.

The experiments and the crude calibrations were recorded on analogue tape (RACAL store
D7) for further analysis. Besides the string displacement, the output of a light barrier positioned
over the ventral area of the wing-beat envelope (not shown in figure 4) was recorded. This
signal indicates the relative phase of the ventral reversal during the wing-beat cycle. By
triggering strobe flashes from this signal, the various kinematic events were assigned, in their
relative phase, to the force signal. From the tape, flight sequences of 0.125s duration
(containing about 25 wing-beat cycles) were digitized at a sampling rate of 20 kHz (IBM AT,
DT 2818). For further treatment, 20 cycles of a particular flight episode were averaged on a
non-dimensional timescale as follows. The time period between two consecutive ventral wing-
beat reversals determines a single wing-beat cycle. This period was divided into 100 equidistant
phase intervals of the wing-beat cycle. The signals from 20 wing-beat cycles were collected and
averaged for each of these intervals. This allows presentation of the force measurements
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independently of the actual wing-beat frequency and calculation of the average of the results
from different flight episodes and different flies. Because of their non-dimensional timescale,
these averages are directly comparable to the kinematic data shown in paper 1 (Zanker

1989a).
3. REsuLTs
(a) Wing velocities

The relative velocity v, between the wing and the surrounding air is determined by three
factors: (i) the translational velocity of the fly v,,,,., which is zero in hovering flight; (ii) the
flapping velocity vy, of the oscillating wing; (iii) the induced velocity v;,, required to obtain
equilibrium according to the Rankine-Froude momentum theory (equation 3). For
hovering flight, the average induced velocity v;,, = 0.51 ms™' results from the fly’s mass
my, & 1 X107 g and an estimated wing-stroke area A, = 14 x 107° m* (2.5 x 107® m long wings
beating over an average stroke amplitude of 135°). This value of v, 4 is not negligible compared
with the wings’ flapping velocity v;,, < 2.5 m s™" or the fly’s forward velocity vy, < 1 ms™
under the conditions of free flight (David 1978). Two points have to be considered before using
¥3nq for further calculations. (i) The induced velocity was calculated from the force balance for
hovering {light, which corresponds to the experimental situation without external wind. In that
case the average stroke plane would be roughly horizontal (cf. Weis-Fogh 1972), i.e. the body
axis would be about 50° inclined relative to the horizontal plane (David 1978 ; Zanker 1988).
Thus, the angle between the vector representing v,,, and the fly’s body axis is about —140°,
because the air flow is assumed to be directed downwards (see inset in figure 9). This
inclination of v,,, relative to the fly’s longitudinal axis leads to a horizontal component of
0.39 m s ! and vertical component of 0.33 m s™* in body coordinates. (ii) It should be noted
that in our crude approximation the induced velocity was assumed to be equally distributed
over the wing-stroke area. It neglects spatial and temporal variations due to the relative
movement of the rapidly oscillating wings (see Wood 1970) and may therefore locally
underestimate the relative velocity between the wing and the surrounding air. However, in the
light of serious inherent simplifications of the quasi-steady theory, this first approximation
appeared tolerable.

The velocity components resulting from the wing oscillation were calculated from the
kinematic data presented in paper 1 (Zanker 1989a). The translational velocity of the wing
was derived by dividing the difference of the wing positions before and after a particular phase
step by the time interval corresponding to two of the 25 phase steps per wing-beat cycle, or
1 with
a standard error of the mean of +2.8 s™'. The horizontal and vertical wind component in the

2/(25 ny). The average, n;, of the actual wing-beat frequencies of the ten flies was 202 s~

sagittal plane of the fly, v, and v,, are plotted in figure 5 (4, ). As expected from the wing path,
the horizontal velocity v, is positive (negative) and the vertical velocity v, is negative (positive)
during downstroke (upstroke). Because the absolute size of the resulting velocity v varies

considerably from the proximal (v = v;,,

) to the distal end of the wing, the calculated
aerodynamic variables will depend strongly on the radial distance 7.

Finally, the velocity vector of relative wing motion in body coordinate system (v,,v,,y,)
is decomposed into two components (figure 5¢). (i) The aerodynamic effective velocity v, is the
component in the plane defined by the wing’s vertical and transverse axis. Again, this value
varies from the proximal to the distal end of the wing; the weighted average along the wing
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Ficure 5. Wing velocities. (g, b) The velocity components along the horizontal (v,) and vertical (v,) body axes as
functions of time given in fractions of the wing-beat period. Note the increase in the velocity maxima from the
base (triangles) to the centre (squares) and the tip (diamonds) of the wing. The wing moves backwards during
the upstroke and forwards during the downstroke. The vertical speed shows a distinct maximum during
upstroke and a minimum during downstroke. (¢) The velocity of the wing can be decomposed by appropriate
geometric transformations into the acrodynamically efficient component v, (dots) and a spanwise component
v, (squares), which is small compared with v,. Data from the kinematic study in paper 1 (r, number of evaluated

cycles; N, number of flies; standard errors of the mecan range between +0.02 m st and +£0.18 ms™!, their

averages are +0.07, £0.09, +0.08 and +0.07 ms™! for centre v,, centre v,, v, and v,, respectively).

span is plotted. It reaches a conspicuous maximum during the upstroke. (ii) The ‘longitudinal”’
velocity component v, along the wing span is not regarded by the quasi-steady theory. This
seems to be justified since the values of v, are small compared with those of v,. Note, however,
that this conclusion is based on the Rankine-Froude assumption that the induced velocity is
essentially normal to the average stroke plane and no additional spanwise components are
induced.

Knowing the aerodynamic velocity of the wing, the Reynolds number Re of Drosophila
melanogaster can be estimated according to equation 4. Based on the average chord length
7= 0.85 x 10~* m as characteristic length and the average speed 7, = 1.25 m s™', the Reynolds
number amounts to 80.
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Ficure 6. Angles of attack. (a) Timecourse of both the morphological angle of attack «,, (open circles) and the
average aerodynamic angle of attack «, (black dots). The standard errors of the mean of «,, (a,) range between
+2.0°and +7.6° (£3.6° and £6.3°), being +4.1° (£4.9°) on average. The angle «,, is positive, i.c. the wing
moves leading edge up, except during the downstroke where the wing moves leading edge down (a,, < 0). In
contrast, a, is positive during the downstroke, i.e. the wing is touched by the air from below. During the
upstroke a, is negative. (4) Time course of the wing’s rotational speed about a longitudinal axis, exceeding
10® deg s during the lower reversal phase (s.e.m.s range between +5and +21 x 10% deg s™, +12 x 10° deg s™*
on average). (¢) Timecourse of the acrodynamic angle of attack o, at various distances from the wing base.
Note that the sign of e, at the wing base (triangles) is opposite to the sign for the distance corresponding to

the average (dots), centre (squares) or tip (diamonds) of the wing, respectively. (Data and timescale as in figure

5.
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(b) Angles of attack

When the wing is oscillating up and down, it is simultaneously rotated about its longitudinal
axis: during the downstroke the leading edge is lowered relative to the trailing edge
(pronation) whereas during the upstroke it is lifted (supination). These cyclic changes of the
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wing’s inclination are accomplished mainly during the complicated squeeze—peel at the dorsal
end of the half-stroke and the quick rotation at the ventral end of the half-stroke (see paper 1).
Correspondingly, the morphological angle of attack «,, varies between small negative values
during the downstroke and high positive values during the upstroke (figure 6a). The rotational
speed of the wing about its longitudinal axis, de,,/d¢, which reflects the performance of the
~! (figure 6b). Jitter in the timecourse
of the rotational speed impairs the preservation of the peak in the averaged data. Actual peak

wing joint, reaches extreme values of at least 10° deg s

amplitudes are likely to exceed the maximum shown in figure 654.

The aerodynamic angle of attack a, (figure 6¢) is the angle of the wing relative to the air
flow. It is calculated as the angle between the direction of the aerodynamically effective
velocity v, (see above) and the transverse wing axis, in the plane defined by the transverse and
vertical wing axes. Because «, depends both on the morphological angle of attack a,, and on
the magnitude and orientation of relative wing motion v,, the timecourse of a, varies with the
distance r from the wing base to the wing tip. It differs considerably from the time course of
o, for the distal wing areas where the flapping velocity is large in comparison to the induced
velocity (figure 6a, ¢). The blade-element theory takes this into account by calculating the
aerodynamic variables for small wing sections and weighting the result with the area of the
given wing element. The timecourse of a,, calculated as weighted average, at the wing base
(r=0), at the wing tip (r = R) and the centre of gravity (r = r;) is plotted in figure 6 (q, ¢)
(black dots). During the downstroke, «, is positive: the air flow touches the wing from the
anatomical bottom side. An enhancement of lift due to Kramer’s effect (delay of the stall
expected on transition to critically increased angles of attack) (see Ellington 1984 d) cannot be
expected for the downstroke because «, is continuously decreasing during this period.
Throughout the upstroke, «, is negative: the air flow hits the wing under almost constant angle
from its anatomical top side. The trajectory of the wing shown in figure 5 of paper 1 (Zanker
1990a) illustrates, qualitatively, the non-intuitive succession of positive and negative angles of
attack.

(¢) Quasi-steady forces

From the coefficients of lift, C;, and drag, C}, of the Drosophila wings, the aerodynamic angle
of attack «, and the aerodynamic effective velocity v,, the lift L and drag D acting on a pair
of wings according to the quasi-steady theory were calculated as a function of time ¢ and radial
distance r. Depending on the posture of the wings in space the resulting aerodynamic force F,
was decomposed into the three orthogonal components of a fly-centred coordinate system, F,

F,, and F,,. The time course of the two components in the fly’s sagittal plane, F,, and F,, is
shown in figure 7 (a, b). Because bilateral symmetry was assumed for the unstimulated fly, the
transversal components F,, of the two wings annihilate each other. Mainly owing to the
increased flapping velocity, the forces are considerably stronger at the wing tip (black
diamonds in figure 7) than at the wing base (black triangles in figure 7). The weighted average
according to the blade-element theory (black dots in figure 7) is very close to the value derived
by generalization of the flight force calculated for the wing elements at the centre of gravity
(black squares in figure 7).

From the kinematic analysis of Phormia wing beat during tethered flight in a head wind,
Nachtigall (1966) concluded that the fly generates a net flight force along the vertical body
axis (which he called ‘lift’ because the body axis was almost horizontal in his experiments)
during the downstroke, and a net force along the longitudinal body axis (‘thrust’) during the
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Ficure 7. Quasi-steady aerodynamic forces. The horizontal (a) and vertical (4) components of flight forces, F,,
and E,, calculated according to the quasi-steady theory for a pair of wings (in body coordinates), are plotted

az’?
as a function of time. (Data and timescale as figure 5.) The standard errors of the mean range between

+0.28 uN and +2.48 uN for the weighted averages of F,, (black dots), and between +0.12 uN and +1.58
uN for F,. Mean s.e.m.s are +0.66 uN and +0.72 uN. Note the variation of the maximum from base
(triangles) to tip (diamonds) of the wing. The forces generated during the downstroke act predominantly in
upward directions. The forces expected during the upstroke are directed downwards and forwards.

upstroke. However, in Drosophila the force production seems to be more complicated. The
vertical component F,, shows a broad maximum during the second half of the downstroke and
a sharp minimum during the upstroke where the forces are directed downwards. The time
course of the horizontal component F,, is dominated by a sharp maximum during the upstroke.
This discrepancy has to be discussed in the light of the different experimental conditions. In
our experiments, the fly was suspended horizontally in still air, which mimics hovering flight
with respect to the external wind but not with respect to the fly’s body angle (0° instead of 50°).
This means that in Drosophila F,, is not the force component counteracting the animal’s weight
and F,, is not the force component responsible for thrust. Because the flight force production
during tethered flight is almost independent of the fly’s orientation in space (see paper 1),
hovering flight lift (referring to gravity coordinate system) can be derived by simple geometric
transformations of £, and F,,. These data are presented in figure 9, in immediate comparison
with the actual measurements of the same force component. On the other hand, one could
argue that the additional head wind in Nachtigall’s (1966) experiments is crucial for the
discrepancy in the orientation of the flight force vector during upstroke and downstroke,
respectively. In paper 3 of the present study (Zanker 19905) it will be shown that the basic
results are not affected by external wind generated in a wind tunnel.

The present data have been used to average, under various boundary conditions, the flight
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TABLE 1. AVERAGE FLIGHT FORCES FOR A WING-BEAT CYCLE

(Forces calculated according to quasi-steady theories by using the kinematic variables found either at the centre of
the wings (centre) or by integration over the wing span (integr.) according to the blade-element theory. The
aerodynamic coefficients for drag and lift of the two wings were derived from measurements on Drosophila
melanogaster or Drosophila virilis, either by interpolation (interpol.) or by approximation (approx.) with the simple
trigonometric functions shown in figure 3.)

force vectors

magnitude inclination

calculation Drosophila coefficients

method species fitted by uN deg
centre melanogaster appox. 1.34 0
integr. melanogaster approx. 1.92 6.0
centre melanogaster interpol. 1.48 -39
integr. melanogaster interpol. 1.88 —0.6
measured melanogaster — 4.5 24.0
centre virilis interpol. 1.92 17.7
integr. virelis interpol. 2.48 189

force over a complete wing beat cycle. The resulting magnitude of the average flight force
vector F, (produced by a pair of wings) and its inclination relative to the longitudinal body axis
is summarized in table 1. The values of F, calculated under the assumption that wing action
is represented by the kinematics near its centre of gravity (rows 1, 3 and 6 in table 1) are about
259, smaller than those calculated as weighted average over the wing span. Thus the
integration over the contributions of blade-elements seems to correct for underestimations of
simpl'fied assumptions. As would be expected, however, neither the magnitude nor the
inclination of the average force vector is strongly influenced by the application of either
interpolated or approximated resolved polars of the wing. When the average flight force is
calculated with the aerodynamic coefficients measured by Vogel (1967) for the wings of the
larger species, Drosophila virilis, F, is slightly increased and oriented upwards (rows 6 and 7 in
table 1), compared with the calculations based on the aerodynamic coefficients measured here
for D. melanogaster (rows 1-4 in table 1). This result is due to Vogel’s slightly increased values
of €y, for positive angles of attack (figure 3) when the wing was cambered. It seems to be
appropriate to describe the aerodynamics of the smaller species Drosophila melanogaster by using
the polar diagrams crudely measured for this species here, instead of by using the data from
Drosophila virilis (twice as heavy), b:cause no indication of any considerable camber could be
seen in the slow-motion pictures of Drosophila melanogaster wing beat (see Zanker 19g9oa). The
inaccuracy introduced by the choice does not change the principle results. In the best case
(row 2 in table 1), the flight force amounts to 1.9 pN and is oriented 6° upwards. This is much
smaller than the average flight force measured for fixed flying Drosophila melanogaster (row 5 in
table 1), which amounts to about 4.5 uN (Gétz 1987) and is oriented 24° in an upward
direction relative to the body axis (Gétz & Wandel 1984). This measured average force meets
the expected orientation, which should be about normal to the average stroke plane.

(d) Measured forces

To investigate the time course of force production during the wing-beat cycle, the fly was
attached to a steel wire, as described above. The timecourse of the string displacement for three
flight episodes, each of 15 ms duration, is presented in figure 8 (b—d). The arrows mark the time

3 Vol. 327. B
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Ficure 8. Measured flight forces. (4) Example of a flight force measurement from a flight episode at a wing-beat
frequency of 185 Hz and a string resonance frequency of 3.3 kHz, plotted on the original time scale (bottom).
(@) Average of 20 wing beat cycles of the same fly plotted on a non-dimensional timescale (top). For comparison
the resulting curve has been repeated three times. (¢, d) T'wo examples from another fly, flying at 189 Hz wing-
beat frequency. The resonance frequency was changed from 1.5 kHz (¢) to 4.5 kHz (d). In all cascs, there is a
strong and instantancous excitation of the string occurring between downstroke and upstroke (indicated by the
black arrows) when the wings are rapidly rotating about their longitudinal axes. A second lift maximum of
variable amplitude appears about half a wing-beat cycle later (open arrows).
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Ficure 9. Measured and calculated force component F, perpendicular to the average stroke plane (the
reconstruction from the force components in body coordinates is sketched in the inset). (a) Average forces
measured during 200 wing-beat cycles from 10 flies, plotted on a non-dimensional timescale. The instantaneous
excitation of the string during the lower reversal of the wing-beat cycle is complemented by a second lift
maximum at the beginning of downstroke. () The aerodynamic force of a pair of wings, calculated according
to the quasi-steady aerodynamic theory (same data as in figure 7, average values) fails to account for the
measured time course of force generation. (¢) The inertial force (squares) due to acceleration or deceleration
of the wing resembles the measured forces in some aspects. However, these forces do not sustain lift or thrust
and do not explain the instantaneous lift pulse at the ventral reversal of the wing beat. The sum of the
aerodynamic and inertfal forces is shown by the dotted line.

when the wings rotate rapidly between the downstroke and the upstroke (quick rotation’) (see
paper 1). In the example shown in figure 84, the string is excited to a damped oscillation at
roughly the resonance frequency of 3.3 kHz once per wing-beat cycle. This sharp lift pulse is
associated with the quick rotation. In addition, a second broader lift maximum (open arrows
in figure 8) can be seen roughly half a wing-beat cycle later, apparently at the beginning of
downstroke. This less pronounced maximum is more obvious when the noise is reduced in the
averaged traces, as can be seen in figure 84, where the signals of 20 wing-beat cycles from the
same flight episode were averaged on a non-dimensional timescale, as explained above.

In figure 8 (¢, d) the timecourse of the string displacement is shown for two flight episodes
from another fly. The string tension was increased, thus changing the resonance frequency from
1.5 kHz (figure 8¢) to 4.5 kHz (figure 8d). Because the wing beat frequency (n, = 189 Hz) did
not change when the string was stressed, it is expected that the instantaneous flight forces might
not have changed either. The difference between the two figures is attributed to the effects of
string tension. Obviously, there are two major excitations of the string during each wing beat
cycle. The first lift pulse associated with the quick wing rotation is sharp enough to induce
oscillations at either resonance frequency. The second lift pulse associated with the beginning of
the downstroke is comparatively smooth and induces oscillations only at low resonance
frequencies (figure 8¢). When the resonance frequency is sufficiently high (figure 84), the second
pulse seems to correspond to the time course of the displacement signal.

The examples shown in figure 8 (b, ) are extreme cases for the ratio between the expression
of the first and the second lift maximum. A more representative timecourse of the force

3-2
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production was obtained by averaging signals of twenty cycles from each of ten flies, plotted
on the non-dimensional timescale in figure 9a. The mean resonance frequency was 2.5 kHz. The
partition into four wing beat phases (upstroke, dorsal reversal, downstroke and ventral
reversal) is adopted from the average kinematic data. The relative phase for this ‘event scale’
is adjusted for the force measurements by using the light barrier signal for stroboscopic
inspection of wing posture, as described above. This plot confirms that the sharp lift pulse
duringthe ventral reversal phase is followed by a second, broader and perhaps stronger
maximum at the beginning of downstroke, which builds up when the wings perform the
squeeze—peel.

4. DiscussioN

In this second part of the present series of papers, two major results were reported. (i) The
average aerodynamic forces calculated according to quasi-steady theory are small compared
with the body mass and oriented almost parallel to the longitudinal body axis. As can be easily
seen from table 1, this result does not critically depend on the actual boundary conditions of
the quasi-steady aerodynamic theory on which the calculations were based. It could be argued
that the deficiency in flight force is due to the situation of tethered flight, which might be sensed
by thefly. However, the average lift measured for tethered flying Drosophila melanogaster (see
row 5 in table 1, taken from Gétz (1987)) is still conspicuously larger than the calculated time
average. Thus, if one excludes the possibility that the flies used for the two sets of experiments
differ systematically (female flies of the same wild-type strain and about the same age have
been used in these experiments), it can be concluded that the quasi-steady theory fails to
explain the essential components of force production in Drosophila melanogaster. (ii) The time
course of the forces calculated following the quasi-steady assumption differs considerably from
the signal of a device designed to assay the instantaneous forces on the fixed flying fly (see
figure 9). This result further supports the notion that the quasi-steady theory is inappropriate
for the calculation of the flight force of a small insect. Again, the observed discrepancies cannot
be due to the situation of tethered flight, because the kinematic and dynamic measurements
leading to the different timecourses were obtained under comparable flight conditions. As
these measurements might point to alternative aerodynamic mechanisms, such as those
proposed by Ellington (19844), the results will be discussed in further detail.

(a) Force measurements -

The major difficulty in interpreting the force measurements is that the actual string
displacement is only proportional to the force acting on the string if the string does not start
to oscillate. This, however, is not the case; even after damping the string, subcritical oscillations
are induced by a sharp impulse, e.g. when a small weight is dropped onto the string. In
principle, such difficulties could be overcome by measuring the complete frequency
characteristic of the device. However, here only two controls were performed for each flight
episode. (i) The sign of force action was confirmed by touching the string with a hair-like wire
alternatively from above and from below. (ii) The resonance frequency was crudely estimated
from the oscillation induced by dropping a 10 mg weight on the string. Accordingly, the
present conclusions from the string measurements are restricted to a more qualitative level.

Despite this restriction, two features can be derived from the average string displacement
presented in figure 9a. (1) A sharp lift pulse is generated during the ventral reversal of the


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

DYNAMICS OF DROSOPHILA WING BEAT 37

wings. (i) A broad lift maximum is built up during the dorsal reversal. The relation between
the magnitude of these two lift peaks varies considerably. The timecourse of the two events
differs from force measurements reported by Buckholz (1981) in Sarcophaga; he found an almost
harmonic oscillation at wing-beat frequéncy. This discrepancy might be due to interspecific
differences or to the fact that his mechanical system was tuned to a resonance frequency close
to the wing-beat frequency, which might suppress higher harmonics.

What mechanisms could account for the two lift peaks observed during the wing-beat cycle
of Drosophila? For direct comparison with the force measurements, in figure 95 the timecourse
of the quasi-steady aerodynamic force component perpendicular to the average stroke plane,
E, is plotted on the same timescale. This force component, which is inclined about 40° relative
to the longitudinal body axis (see inset, figure 9), would actually be responsible for lift
production in a freely hovering fruitfly. Here, a lift maximum is observed during the upstroke
and a smaller peak during the downstroke. Most of the time £ is positive, i.e. almost no force
oriented downwards would be generated by a fly hovering with horizontal stroke plane.
Because both lift peaks appear later than the measured excitations of the string, and because
the lift peak during upstroke is not sharp enough to explain the pulse-like excitation, the
measured signal cannot be explained convincingly on the basis of the calculated quasi-steady
aerodynamic forces.

So far, we have not considered the inertial forces due to the acceleration of the wings and
the boundary layer of air around the wings. These forces must be balanced by opposit€ forces
acting on the body of the fly. Although these forces do not produce any net lift, they are picked
up by the string. These forces were obtained by multiplying the total mass of the two wings
2m.,, with the negative acceleration —dv/d¢ of their centre of gravity. It should be noted that
two simplifications are introduced by this method of calculation. (i) Itis assumed that the mass
distribution is equal on both sides of the axis of supination and pronation. In this case, no
inertial forces result from the rotation of the wings around their longitudinal axes. (ii)
Concentration of the virtual mass about 2 x 107 m distal from the centre of gravity is expected
because it increases with the square of wing chord, ¢?, instead of with ¢. Because this difference
is small, and the virtual mass is only a small fraction of the total wing mass, this difference was
neglected. The time course of the inertial force component perpendicular to the average stroke
plane is plotted in figure 9¢, on the same time scale as the measured forces. Note that the force
scale is blown up by a factor of 4, compared with that of the calculated aerodynamic forces in
figure 946. The sum of the two forces is shown by the dotted line in figure 9¢. Surprisingly, even
in the direction perpendicular to the average stroke plane, in which the accelerations are
expected to be minimal, the inertial forces seem to exceed the aerodynamic forces and are
therefore likely to dominate the measured force signal. This appears to be a consequence of the
curved trajectory elevating the wing from the average stroke plane during each of the two
reversal phases. The peak and the trough of inertial forces during downstroke seem to reflect
the measured forces in a first approximation, and the inertial force maximum appears at the
same time as the sharp excitation of the string. However, the string does not oscillate upwards
and downwards to the same extent, as should be expected from the symmetry of inertial force
peak and trough. In contrast, the average level is shifted to higher values, i.e. a net lift is
induced. Furthermore, the lift pulse actually generated by the fly seems to be sharper than the
inertial force pulse, because the string is excited to oscillations at higher resonant frequencies
than those contained in the time course of the inertial force. An additional mechanism seems
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to be required for generating the strong and sharp lift pulse during the ventral reversal phase
of the wing beat cycle. This event can neither be explained by the mechanics of wing beat nor
by the quasi-steady aerodynamic theory.

When a lift pulse is produced at the end of a half stroke, the flight force does not attach in
the centre of gravity of the fly’s body. Thus a torque about the transversal body axis is
generated which depends on the time course of the flight force. Consequently, the body angle
of a free-flying fly should be subjected to a certain oscillation during the wing-beat cycle. As
mentioned by Ellington (1984¢), this could be an indicator for force production in insect flight,
if problems of resolution are overcome.

(b) Quasi-steady theory

What are the possible sources of errors and the restrictions of the aerodynamic calculations
done so far? All results derived from equations 1 and 2 depend on the empirical coefficients of
lift and drag, C; and Cj, respectively. Although crudely measured for a small sample of
Drosophila melanogaster wings, the data are similar to those presented by Vogel (1967) for
Drosophila virilis (figure 3). According to the results in table 1, the coefficients do not seem to
be a major source of errors.

Accurate kinematic data are necessary to calculate the relative velocity and the angle of
attack of the wing and, based on these values, the direction and magnitude of the aerodynamic
force vector in space. Such data were taken from the kinematic study presented in paper 1
(Zanker 1989a). It should be noted that the three-dimensional representation of the wing
motion derived here allows the calculation of the quasi-steady force as a vector in space. The
kinematic data used here should be fairly representative, because they are based on 1186 single
photographs from 10 flies and the s.e.m.s for the kinematic data are considerably small.
Artefacts may have been introduced by averaging data from different flies with some error in
the relative phase, because high-frequency components are likely to be suppressed under
conditions of phase jitter. A strong influence of such errors can be excluded, because control
calculations for individual flight episodes, even with extreme deviations from the average
kinematics, lead to similar general results. Furthermore, fast transient events of wing-beat
kinematics may have been neglected because of the artificially slow sampling rate of the motion
pictures, which just gives a time-averaged representation of the wing beat (see paper 1). In a
strict sense, only the direct comparison of the wing beat with the force signal from the same fly
at the same time, i.e. laser-interferometric measurements combined with simultaneous high-
speed microphotography, ensures that the force measurements and aerodynamic calculations
correspond to each other. However, it can be argued that artefacts from time-averaging have
little influence on the quasi-steady calculations, for two reasons. (i) Transient effects are
disregarded by the quasi-steady theory, anyway. (ii) The peak velocities and angles of attack,
which lead to the highest contributions to the quasi-steady flight force, appear through
comparatively continuous phases of downstroke and upstroke. Under these conditions, phase
jitter will have little influence on the magnitude of average data, and the applied procedure
should not lead to critical underestimates by quasi-steady aerodynamics.

In contrast to a fixed aerofoil like that of an airplane or a soaring bird, the kinematic
variables of an oscillating wing vary considerably from wing base to wing tip. The blade-
element theory takes this gradient into account by dissecting the wing into small elements with
constant velocity and angle of attack. For each element the lift and drag force component is
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calculated and finally integrated over the whole wing with the chord length of the particular
element as weighting factor. The three-dimensional data of wing motion and the shape
measurements of Drosophila wings presented here were the basis for such calculations. The
results in table 1 show that the gain from this approximation is small compared with the overall
deficiency in flight forces. No attempt has been made, so far, to account for temporal and
spatial modulations of the induced velocity met by the beating wings. The assumption of a
constant value of v;,4 is justified under steady conditions, but appears as an inappropriate
simplification in the pfésent case.

To summarize these considerations, the reported discrepancy between measured and
calculated flight forces are not due to the limited quality of the measurements, but to violating
the restrictions of the theory applied to the data. The calculation of the acting forces according
to equations 1 and 2 was based on the assumption that at any time the wing can be treated
as moving under steady-state conditions in the air with the instantaneous velocity and angle
of attack (quasi-steady assumption). However, this quasi-steady assumption is not met by
reality, because the oscillating wing changes its inclination and velocity continuously and
rapidly. In general, (i) the single wing cannot be treated independently at two consecutive
phase steps, because the circulation of a given phase step depends on the circulation of the wing
at the phase steps before; and (ii) the circulation of the two wings of Drosophila cannot be
treated independently of each other, as they come very close to, or touch, each other during
the dorsal reversal. Essential components of spatiotemporal interaction in the dynamics of the
wing-beat are obviously not covered by the quasi-steady theory.

(¢) Unsteady aerodynamics

To overcome the shortcomings of the quasi-steady theory, the air flow around the moving
wings has to be considered more thoroughly. Aerodynamic theory was substantially expanded
by the analysis of unsteady flight mechanisms (see, for example, Weis-Fogh & Jensen 1956;
Jensen 1956; Bennett 1970; Weis-Fogh 1973 ; Maxworthy 1981). These issues are extensively
reviewed by Rayner (1979) and Ellington (1984d, ¢) and only a few general points will be
mentioned in the following. The flow around a moving aerofoil can formally be decomposed
into a pure translational component and a circulation /. Using I, the lift force acting on a wing
element can then be described according to the Kutta—Joukowski theorem as

dL = plv,dr. (5)
The circulation " may result from translational movements of the wing
I= (e, Cy), (6)

which transforms equation 5 into an expression analogous to equation 1. In addition,
rotational wing movements lead to a circulation not covered by the quasi-steady theory so far,
which can be expressed as -
I, = y(da,/di) ¢, (7)
where vy is the rotational lift coefficient. As long as rotational and translational speeds do not
change, the lift can be directly calculated from equations 5-7. However, during the wing-beat
cycle of Drosophila, for instance, both translational and rotational speeds vary periodically, i.e.
the circulation around the wing is modified continuously. This complicates the flow situation
in two major aspects. (i) According to Kelvin’s circulation theorem, any change of circulation
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drl"is accompanied by the generation of a complementary circulation —dJ[’, which is shed into
the wake as a vortex. The vortex sheet shed during wing oscillation convects downwards,
leading to additional velocity components and changes of the wing’s angle of attack.
Accordingly, the total circulation I satisfying the Kutta condition in equation 5 is formally
extended by the circulation of wake vorticity I';. (ii) The growth of circulation around a section
does not follow immediately the timecourse of velocity and angle of attack, as should be
expected from equations 6 and 7: even when a wing has travelled six chord lengths after the
onset of translational motion, circulation and lift are only about 909, of the quasi-steady
values. This so-called ‘Wagner effect’ reflects the delay of vortex shedding into the wake.
Estimating the lift forces from the circulation enables two approaches. (i) Lift can be
deduced from the pattern of air flow which was visualized by suitable techniques (see, for
example, Maxworthy 1979; Speeding et al. 1984). (ii) The ‘vortex theory’ of hovering flight
(Ellington 1984e¢, /) combines the momentum and the circulation approach to flapping flight
aerodynamics, leading to the concept of a ‘pulsed actuator disc’. This concept invokes two
correction factors for the Rankine-Froude estimate of induced power, P¥., one spatial (o)
regarding the inhomogeneity of circulation over the wing-stroke area, the other temporal (7)
referring to the variation of circulation throughout the oscillation cycle. This leads to formulae

F*_"

“ro)» to accelerate the surrounding air

for the mean power required to overcome profile drag (
P¥ ., (C.)) or rotational (Pf,

by means of quasi-steady (P}, X
). By equating the weight and the circulatory lift for a hovering

E—
Pacc

(v)) mechanisms and to overcome the
inertia of the wings (
animal, the following coefficients can be derived: (i) the mean lift coefficient C}, which is
sufficient to explain hovering flight by quasi-steady mechanisms; and (ii) the mean rotational
lift coefficient ¥, which is a measure for the relative strength of (unsteady) rotational
mechanisms involved in lift production. Some of the aerodynamic parameters calculated from
our kinematic data according to Ellington’s vortex theory are shown in table 2. The
corresponding values for male fruitflies (taken from Laurie-Ahlberg e/ al. 1985) and the
hoverfly Episyrphus (taken from Ellington 1984 f) are listed for comparison. Before discussing
the parameters in detail, one should remember that the vortex theory relies on assumptions
about wing-beat kinematics to ease the calculations. One prominent approximation, which
holds quite well for the species investigated by Ellington (1984¢), is that of harmonic wing
oscillation. However, this is not the case for Drosophila, as can be seen in figure 5 from the peak
values of the wing speed, or from the deviation of the actual ratio (1.4) of the duration of
downstroke and upstroke from the ratio d/u = 1.0 expected in harmonic oscillation.

The mean lift and drag coefficients calculated according to the vortex theory differ
considerably between the two fly species in table 2. Owing to the smaller Reynolds number the
mean profile drag coefficient Cy, .o = 0.59 of the fruitfly exceeds that of the hoverfly. However,
this value roughly corresponds to aerodynamic angles of attack of about 30°, which is about
the mean inclination of the wing actually observed during translation. This is to say that
Ellington’s estimate of Cy, ., seems to hold even for small insects like Drosophila. The mean
quast-steady lifl cogfficient required to keep the fly airborne, C, = 0.62, is much smaller than
that of Episyrphus, mainly because of the assumed value of the mean lift Z* = 0.41 in units of
the body weight. When the fly has to lift the complete body weight (not the case in tethered
flight; see Gotz (1987), L¥* is by definition 1.0 and C;, must be 1.45, if the wing beat is not
changed. One important point should be noted here. Because the value of C, = 0.62 is
comparatively small and close to the values actually measured for Drosophila wings at angles of
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TABLE 2. AERODYNAMIC PARAMETERS CALCULATED ACCORDING TO ELLINGTON’S
VORTEX THEORY

(The profile power, induced power and, in the absence of elastic storage, inertial power contribute to mechanical
power output: F, = F, +F,+F,,. The asterisk (*) denotes the specific power components per unit weight

supported (dimension W N71); the bars ( ) relate to averages for a wing-beat cycle.)

Drosophila
(tethered flight)
Episyrphus (Laurue-
(free flight) Ahlberg
(Ellington (present study) et al.
parameter 19844d) 1985)
mean lift in units of body weight L* ~ 1.00 0.41 (1.00) 1.00
mean profile drag coefficient Cop pro 0.26 0.59 — 0.78
mean lift coefficient C, 1.17 0.62 (1.45) —
mean rotational life coefficient v 0.41 0.31-0.57  (0.75-1.36) —
temporal correction factor T 0.05 0.046 (0.113) —
quasi-steady spatial correction factor o(C,) 0.07 0.14 — —
rotational spatial correction factor o(y) 0.09 . 0.09 — —
mean specific profile power Py 0.96 1.06 — 0.79
mean specific quasi-steady P¥.(C)) 0.90 0.160 (0.64) 0.64
induced power
mean specific rotational P .(y) 1.00 0.153 (0.62) 0.64
induced power o
mean specific inertial power Px . 6.44 5.80 — 1.91

attack between 30° and 60°, this result would not have led to the rejection of the quasi-steady
assumption in former investigations (see, for example, Weis-Fogh 1973). However, in the
present study it was shown that despite the moderate mean lift coefficient necessary to allow
hovering flight, the quasi-steady assumption is definitely not justified. Even if the reduction of
mean lift in tethered flight is taken into account, the lift produced according to this theory is
not sufficient. The mean rotational lift coefficient y is a measure for the amount of circulation
which has to be induced by rotational wing movements if the fly was lifted by such mechanisms.
For Drosophila, a value between 0.57 and 0.31 is derived (1.36 and 0.75 if lift of the body weight
is assumed), depending on the mean rotational speed which was either (i) calculated as the
average for the complete pronation and supination phase (5.5 rad per wing-beat cycle) or (ii)
was corrected to a more realistic value of 10 rad per cycle, when only the time intervals of
strong rotations were considered. For both conditions, the values of ¥ are similar for Drosophila
and Episyrphus, but small compared with the estimate derived, for instance, from theoretical
and model investigations (see Ellington 1984 /) for the clap—fling mechanism. Accordingly, the
fly should be able to lift its body weight based on rotational mechanisms.

From the parameters calculated so far, the specific power requirements, i.e. the power
needed to lift a unit of body weight, are derived. The Rankine-Froude estimate of mean specific
induced power P} is corrected for spatial inhomogeneity and periodicity of the wake produced
by the pulsed actuator disc, by the spatial factor o and the temporal factor 7. In Drosophila the
quasi-steady spatial correction factor tends to be greater than in Episyrphus, i.e. the energy loss
by spatial variation of wake velocity 1s increased. This is probably due to the less harmonic
wing motion of the fruitfly. The resulting values for the quasi-steady and rolalional induced
power of Drosophila, Prog(C) and Py (y), are low compared with those of Episyrphus, because
the Rankine-Froude estimate (P%, = 0.14 W N7'| not listed in table 2) is far below that of
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Episyrphus (about 0.9) owing to the smaller wing loading of Drosophila. Because the values for
quasi-steady and rotational mechanisms are almost the same, the energy consumption does not
seem to depend critically on the involved aerodynamic mechanism. This simplifies the
evaluation of the specific aerodynamic power, P¥ = 1.20, which is the sum of profile power and
induced power. Because the mean specific profile power is about the same for both species,
whereas the Rankine-Froude estimate differs considerably, the aerodynamic efficiency,
7, = P¥o/P¥ = 0.11, is smaller in Drosophila than in Episyrphus (0.45). This low value reflects the
decrease of aerodynamic efficiency in the range of low Reynolds numbers, when the
importance to profile drag increases compared with the other aerodynamic forces. Finally, the
mean power output per unit mass of flight muscles P% and the mechanochemical efficiency .,
(i.e. the ratio between power output and energy consumption) are calculated from the mean
metabolic power input of about 18 W N™' (Gétz 1987) during tethered flight. To find the
upper and lower limit, two assumptions were used. (i) The wings have to be accelerated
actively by the muscles requiring the mean specific Py, in addition. (ii) The kinetic energy of
the wing beat is completely stored in elastic elements when the wings are decelerating at the end
of each halfstroke (P, = 0). Both values of mean muscular power output P¥ (22 and
7.5 W N7, respectively) are compatible with a maximum of about 30 W N7!, as suggested for
asynchronous fibrillar flight muscles in insects (Ellington 1985, for example). On the other
hand, unexpectedly high mechanochemical efficiencies (0.20 instead of 0.068) are the result of
assuming the absence of elastic storage. Thus it seems realistic to expect at least partial storage
of kinetic energy in elastic elements. All these values differ slightly from those calculated by
Laurie-Ahlberg e al. (1985), who used male flies, which are generally smaller than females, did
not correct for reduced lift production in tethered flight, and assumed harmonic oscillation of
the wings.

The comparison of the mean lift coefficients C;, and 7 shows that quasi-steady mechanisms
are unlikely to account for lift production in hovering Drosophila, whereas rotational
mechanisms could easily generate sufficient lift. Which wing rotations could be responsible for
this mechanism? The two phases of reversal between the half strokes are the likely candidates
already discussed above. Inspired by the unsteady aerofoil theory, the clap—fling of small
insects (Weis-Fogh 1973; Bennett 1977) has been interpreted as an elaborate mechanism to
reduce the Wagner effect. The stop vortex of one wing is the start vortex of the other and vice
versa, and therefore the circulation is reduced at the end of upstroke and built up immediately
at the beginning of downstroke. Thus, losses due to vortex shedding are prevented (Lighthill
1973 ; Maxworthy 1981). This event seems to contribute to the lift maximum observed at the
beginning of the downstroke in the force measurements presented here.

Compared with the extensively investigated clap-fling, the events during the ventral reversal
phase of wing beat have found only little interest, so far. The discrepancy between the
measured forces and the forces expected under quasi-steady conditions indicate that during this
phase unsteady effects should play an important role in lift production. Because the circulation
around the wing must change its sign between downstroke and upstroke, shedding or mutual
exchange of a combined start- and stop-vortex is expected at just this moment. Owing to the
Wagner effect, conventional vortex shedding will reduce the production of circulatory lift. A
hypothetical ‘flex mechanism’ was proposed by Ellington (1984d) to accelerate vortex
shedding during isolated rotation, thus decreasing the influence of the Wagner effect. In
addition, it might be speculated that the extremely rapid wing rotation could facilitate the
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shedding of the combined start- and stop-vortices and impart a strong downward momentum
to this vortex. This could be used by the fly to gain lift from the conservation of the overall
momentum (Ellington 1984¢). The ‘fast supination effect’ discussed by Nachtigall (1979) for
Phormia resembles this mechanism, at first glance. However, supination in the blowfly is far less
pronounced than in Drosophila; in addition, the vortex separated from the trailing edge of the
wing in Nachtigall’s (1979) sketch seems to move in a direction unlikely to support lift. The
present conjectures have to be corroborated by future research. Flow visualization (Maxworthy
1981) is obviously not a simple task for the tiny fruitfly. However, this might help to
discriminate between assumed and actual flight mechanisms. The investigation of these
mechanisms under conditions of free flight will be another goal for the future.

In conclusion, the flight of Drosophila melanogaster is likely to depend for a major part on
unsteady effects. By clever exploitation of the necessarily unsteady aerodynamics at high wing-
beat frequencies, the small fly has learned to cope with the disadvantage of*low Reynolds
numbers and the lack of conventional aerofoil action.

We thank A. Borst, M. Egelhaaf and G. Mohn for carefully reading earlier versions of the
manuscript; B. Bochenek for preparing the figures; and U. Flaiz for typing the manuscript.
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